Climate change-driven cooling can kill marine megafauna at their distributional limits (2024)

References

  1. Brierley, A. S. & Kingsford, M. J. Impacts of climate change on marine organisms and ecosystems. Curr. Biol. 19, R602–R614 (2009).

    Article CAS Google Scholar

  2. Poloczanska, E. S. et al. Responses of marine organisms to climate change across oceans.Front. Mar. Sci. 62, 3 (2016).

    Google Scholar

  3. Cooley, S. et al. in Climate Change 2022: Impacts, Adaptation and Vulnerability (eds Pörtner, H.-O. et al.) 37–118 (IPCC, Cambridge Univ. Press, 2022).

  4. Vergés, A. et al. The tropicalization of temperate marine ecosystems: climate-mediated changes in herbivory and community phase shifts. Proc. R. Soc. B 281, 20140846 (2014).

    Article Google Scholar

  5. Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9, 306–312 (2019).

    Article Google Scholar

  6. Frölicher, T. L. & Laufkötter, C. Emerging risks from marine heat waves. Nat. Commun. https://doi.org/10.1038/s41467-018-03163-6 (2018).

  7. Webb, T. J., Lines, A. & Howarth, L. M. Occupancy‐derived thermal affinities reflect known physiological thermal limits of marine species. Ecol. Evol. 10, 7050–7061 (2020).

    Article Google Scholar

  8. Bakun, A. Global climate change and intensification of coastal ocean upwelling. Science 247, 198–201 (1990).

    Article CAS Google Scholar

  9. Bakun, A. et al. Anticipated effects of climate change on coastal upwelling ecosystems. Curr. Clim. Change Rep. 1, 85–93 (2015).

    Article Google Scholar

  10. James, N. C. et al. Effects of climate change on South African estuaries and associated fish species. Clim. Res. 57, 233–248 (2013).

    Article Google Scholar

  11. Poloczanska, E. S., Limpus, C. J. & Hays, G. C. Vulnerability of marine turtles to climate change. Adv. Mar. Biol. 56, 151–211 (2009).

    Article Google Scholar

  12. Griffin, L. P. et al. Warming seas increase cold-stunning events for Kemp’s ridley sea turtles in the northwest Atlantic. PLoS ONE 14, e0211503 (2019).

    Article CAS Google Scholar

  13. Hanekom, N., Hutchings, L., Joubert, P. & Van Der Byl, P. Sea temperature variations in the Tsitsikamma Coastal National Park, South Africa, with notes on the effect of cold conditions on some fish populations. South Afr. J. Mar. Sci. 8, 145–153 (1989).

    Article Google Scholar

  14. Lutjeharms, J. Three decades of research on the greater Agulhas Current. Ocean Sci. 3, 129–147 (2007).

    Article Google Scholar

  15. Goschen, W., Bornman, T., Deyzel, S. & Schumann, E. Coastal upwelling on the far eastern Agulhas Bank associated with large meanders in the Agulhas Current. Cont. Shelf Res. 101, 34–46 (2015).

    Article Google Scholar

  16. Schumann, E. H. Wind-driven mixed layer and coastal upwelling processes off the south coast of South Africa. J. Mar. Res. 57, 671–691 (1999).

    Article Google Scholar

  17. Harrison, T. D. & Whitfield, A. K. Estuarine typology and the structuring of fish communities in South Africa. Environ. Biol. Fishes 75, 269–293 (2006).

    Article Google Scholar

  18. Lutjeharms, J., Cooper, J. & Roberts, M. Upwelling at the inshore edge of the Agulhas Current. Cont. Shelf Res. 20, 737–761 (2000).

    Article Google Scholar

  19. Reid, C. H. et al. An updated review of cold shock and cold stress in fish. J. Fish Biol. 100, 1102–1137 (2022).

    Article Google Scholar

  20. Hobday, A. J. et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141, 227–238 (2016).

    Article Google Scholar

  21. Murie, K. A. & Bourdeau, P. E. Energetic context determines the effects of multiple upwelling-associated stressors on sea urchin performance. Sci. Rep. 11, 141 (2021).

    Article Google Scholar

  22. Matich, P. & Heithaus, M. R. Effects of an extreme temperature event on the behavior and age structure of an estuarine top predator, Carcharhinus leucas. Mar. Ecol. Prog. Ser. 447, 165–178 (2012).

    Article Google Scholar

  23. Carlisle, A. B. et al. Reconstructing habitat use by juvenile salmon sharks links upwelling to strandings in the California Current. Mar. Ecol. Prog. Ser. 525, 217–228 (2015).

    Article Google Scholar

  24. Rohner, C. et al. Trends in sightings and environmental influences on a coastal aggregation of manta rays and whale sharks. Mar. Ecol. Prog. Ser. 482, 153–168 (2013).

    Article Google Scholar

  25. Farmer, N. A. et al. The distribution of manta rays in the western North Atlantic Ocean off the eastern United States. Sci. Rep. 12, 482 (2022).

    Article Google Scholar

  26. Lubitz, N. et al. Context drives movement patterns in a mobile marine predator. Mov. Ecol. 11, 28 (2023).

    Article Google Scholar

  27. García-Reyes, M. et al. Under pressure: climate change, upwelling, and eastern boundary upwelling ecosystems. Front. Mar. Sci. 2, 109 (2015).

    Article Google Scholar

  28. Wang, D., Gouhier, T. C., Menge, B. A. & Ganguly, A. R. Intensification and spatial hom*ogenization of coastal upwelling under climate change. Nature 518, 390–394 (2015).

    Article CAS Google Scholar

  29. Roughan, M. & Middleton, J. H. A comparison of observed upwelling mechanisms off the east coast of Australia. Cont. Shelf Res. 22, 2551–2572 (2002).

    Article Google Scholar

  30. Leber, G. M., Beal, L. M. & Elipot, S. Wind and current forcing combine to drive strong upwelling in the Agulhas Current. J. Phys. Oceanogr. 47, 123–134 (2017).

    Article Google Scholar

  31. Suthers, I. M. et al. The Strengthening East Australian Current, Its Eddies and Biological Effects: An Introduction and Overview 538–546 (Elsevier, 2011).

  32. Beal, L. M. & Elipot, S. Broadening not strengthening of the Agulhas Current since the early 1990s. Nature 540, 570–573 (2016).

    Article CAS Google Scholar

  33. Huang, Z. & Wang, X. H. Mapping the spatial and temporal variability of the upwelling systems of the Australian south-eastern coast using 14-year of MODIS data. Remote Sens. Environ. 227, 90–109 (2019).

    Article Google Scholar

  34. Schilling, H. T., Hinchliffe, C., Gillson, J. P., Miskiewicz, A. G. & Suthers, I. M. Coastal winds and larval fish abundance indicate a recruitment mechanism for southeast Australian estuarine fisheries. Fish. Oceanogr. 31, 40–55 (2022).

    Article Google Scholar

  35. Meneghesso, C. et al. Remotely-sensed L4 SST underestimates the thermal fingerprint of coastal upwelling. Remote Sens. Environ. 237, 111588 (2020).

    Article Google Scholar

  36. Duncan, M., James, N., Bates, A., Goschen, W. & Potts, W. Localised intermittent upwelling intensity has increased along South Africa’s south coast due to El Niño–Southern Oscillation phase state. Afr. J. Mar. Sci. 41, 325–330 (2019).

    Article Google Scholar

  37. Heupel, M. R. & Simpfendorfer, C. A. Movement and distribution of young bull sharks Carcharhinus leucas in a variable estuarine environment. Aquat. Biol. 1, 277–289 (2008).

    Article Google Scholar

  38. Smoothey, A. F. et al. Patterns of occurrence of sharks in Sydney Harbour, a large urbanised estuary. PLoS ONE 11, e0146911 (2016).

    Article Google Scholar

  39. Curtis, T. H., Adams, D. H. & Burgess, G. H. Seasonal distribution and habitat associations of bull sharks in the Indian River Lagoon, Florida: a 30-year synthesis. Trans. Am. Fish. Soc. 140, 1213–1226 (2011).

    Article Google Scholar

  40. Cliff, G. & Dudley, S. Sharks caught in the protective gill nets off Natal, South Africa. 4. The bull shark Carcharhinus leucas Valenciennes. South Afr. J. Mar. Sci. 10, 253–270 (1991).

    Article Google Scholar

  41. Smoothey, A. F., Lee, K. A. & Peddemors, V. M. Long-term patterns of abundance, residency and movements of bull sharks (Carcharhinus leucas) in Sydney Harbour, Australia. Sci. Rep. 9, 10 (2019).

    Article Google Scholar

  42. Spurgeon, E., Anderson, J. M., Liu, Y., Barajas, V. L. & Lowe, C. G. Quantifying thermal cues that initiate mass emigrations in juvenile white sharks. Sci. Rep. 12, 19874 (2022).

    Article Google Scholar

  43. Marchesiello, P., Gibbs, M. T. & Middleton, J. H. Simulations of coastal upwelling on the Sydney continental shelf. Mar. Freshw. Res. 51, 577–588 (2000).

    Article Google Scholar

  44. Harrison, T. & Whitfield, A. Temperature and salinity as primary determinants influencing the biogeography of fishes in South African estuaries. Estuar. Coast. Shelf Sci. 66, 335–345 (2006).

    Article Google Scholar

  45. Armstrong, A. J. et al. The geographic distribution of reef and oceanic manta rays (Mobula alfredi and Mobula birostris) in Australian coastal waters. J. Fish. Biol. 96, 835–840 (2020).

    Article Google Scholar

  46. Goschen, W. & Schumann, E. Upwelling and the occurrence of cold water around Cape Recife, Algoa Bay, South Africa. South Afr. J. Mar. Sci. 16, 57–67 (1995).

    Article Google Scholar

  47. Roy, C., Van der Lingen, C., Coetzee, J. & Lutjeharms, J. Abrupt environmental shift associated with changes in the distribution of Cape anchovy Engraulis encrasicolus spawners in the southern Benguela. Afr. J. Mar. Sci. 29, 309–319 (2007).

    Article Google Scholar

  48. Bolton, J., Anderson, R., Smit, A. & Rothman, M. South African kelp moving eastwards: the discovery of Ecklonia maxima (Osbeck) Papenfuss at De Hoop Nature Reserve on the south coast of South Africa. Afr. J. Mar. Sci. 34, 147–151 (2012).

    Article Google Scholar

  49. Muñiz, C., McQuaid, C. D. & Weidberg, N. Seasonality of primary productivity affects coastal species more than its magnitude. Sci. Total Environ. 757, 143740 (2021).

    Article Google Scholar

  50. Nelson, G. & Hutchings, L. The Benguela upwelling area. Prog. Oceanogr. 12, 333–356 (1983).

    Article Google Scholar

  51. Hutchings, L. et al. The Benguela Current: an ecosystem of four components. Prog. Oceanogr. 83, 15–32 (2009).

    Article Google Scholar

  52. Last, P. et al. Rays of the World (CSIRO, 2016).

  53. Compagno, L., Dando, M. & Fowler, S. A Field Guide to the Sharks of the World (Collins, 2005).

  54. Niella, Y., Smoothey, A. F., Peddemors, V. & Harcourt, R. Predicting changes in distribution of a large coastal shark in the face of the strengthening East Australian Current. Mar. Ecol. Prog. Ser. 642, 163–177 (2020).

    Article Google Scholar

  55. Griffiths, C. L., Robinson, T. B., Lange, L. & Mead, A. Marine biodiversity in South Africa: an evaluation of current states of knowledge. PLoS ONE 5, e12008 (2010).

    Article Google Scholar

  56. Archer, M. R., Roughan, M., Keating, S. R. & Schaeffer, A. On the variability of the East Australian Current: jet structure, meandering, and influence on shelf circulation. J. Geophys. Res. Oceans 122, 8464–8481 (2017).

    Article Google Scholar

  57. Abrahams, A., Schlegel, R. W. & Smit, A. J. A novel approach to quantify metrics of upwelling intensity, frequency, and duration. PLoS ONE 16, e0254026 (2021).

    Article CAS Google Scholar

  58. Good, S. et al. The current configuration of the OSTIA system for operational production of foundation sea surface temperature and ice concentration analyses. Remote Sens. 12, 720 (2020).

    Article Google Scholar

  59. Yang, C. et al. Sea surface temperature intercomparison in the framework of the Copernicus Climate Change Service (C3S). J. Clim. 34, 5257–5283 (2021).

    Article Google Scholar

  60. Schlegel, R. W. & Smit, A. J. heatwaveR: a central algorithm for the detection of heatwaves and cold-spells. J. Open Source Softw. 3, 821 (2018).

    Article Google Scholar

  61. Schlegel, R. W., Oliver, E. C., Hobday, A. J. & Smit, A. J. Detecting marine heatwaves with sub-optimal data. Front. Mar. Sci. 6, 737 (2019).

    Article Google Scholar

  62. Daly, R., Smale, M. J., Cowley, P. D. & Froneman, P. W. Residency patterns and migration dynamics of adult bull sharks (Carcharhinus leucas) on the east coast of southern Africa. PLoS ONE 9, e109357 (2014).

    Article Google Scholar

  63. Brunnschweiler, J. M. Sharksucker–shark interaction in two carcharhinid species. Mar. Ecol. 27, 89–94 (2006).

    Article Google Scholar

  64. R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021); https://www.R-project.org/

  65. Stuart-Smith, R. D., Edgar, G. J., Barrett, N. S., Kininmonth, S. J. & Bates, A. E. Thermal biases and vulnerability to warming in the world’s marine fauna. Nature 528, 88–92 (2015).

    Article CAS Google Scholar

  66. Lubitz, N. Climate-change-driven cooling can kill marine megafauna at their distributional limits. Dryad https://doi.org/10.5061/dryad.xd2547dn1 (2024).

Download references

Climate change-driven cooling can kill marine megafauna at their distributional limits (2024)

References

Top Articles
Latest Posts
Article information

Author: Ray Christiansen

Last Updated:

Views: 5286

Rating: 4.9 / 5 (69 voted)

Reviews: 84% of readers found this page helpful

Author information

Name: Ray Christiansen

Birthday: 1998-05-04

Address: Apt. 814 34339 Sauer Islands, Hirtheville, GA 02446-8771

Phone: +337636892828

Job: Lead Hospitality Designer

Hobby: Urban exploration, Tai chi, Lockpicking, Fashion, Gunsmithing, Pottery, Geocaching

Introduction: My name is Ray Christiansen, I am a fair, good, cute, gentle, vast, glamorous, excited person who loves writing and wants to share my knowledge and understanding with you.